Funções do 2 grau, exponencial e logaritmica
Por: Juliana2017 • 17/10/2018 • 1.471 Palavras (6 Páginas) • 302 Visualizações
...
Fórmula geral da função ímpar
f(– x) = – f(x)
– x = domínio
f(– x) = imagem
- f(x) = simétrico da imagem
Exemplo de gráfico da função ímpar: f(x) = 3x
[pic 9]
4 – Função afim ou polinomial do primeiro grau
Para saber se uma função é polinomial do primeiro grau, devemos observar o maior grau da variável x (termo desconhecido), que sempre deve ser igual a 1. Nessa função, o gráfico é uma reta. Além disso, ela possui: domínio x, imagem f(x) e coeficientes a e b.
Fórmula geral da função afim ou polinomial do primeiro grau
f(x) = ax + b
x = domínio
f(x) = imagem
a = coeficiente
b = coeficiente
Exemplo de gráfico da função polinomial do primeiro grau: f(x) = 4x + 1
[pic 10]
5 – Função Linear
A função linear tem sua origem na função do primeiro grau (f(x) = ax + b). Trata-se de um caso particular, pois b sempre será igual a zero.
Fórmula geral da função linear
f(x) = ax
x = domínio
f(x) = imagem
a = coeficiente
Exemplo de gráfico da função linear: f(x) = -x/3
[pic 11]
6 – Função crescente
A função polinomial do primeiro grau será crescente quando o coeficiente a for diferente de zero e maior que um (a > 1).
Fórmula geral da função crescente
f(x) = + ax + b
x = domínio
f(x) = imagem
a = coeficiente sempre positivo
b = coeficiente
Exemplo de gráfico da função crescente: f(x) = 5x
[pic 12]
7 – Função decrescente
Na função decrescente, o coeficiente a da função do primeiro grau (f(x) = ax + b) é sempre negativo.
Fórmula geral da função decrescente
f(x) = - ax + b
x= domínio/ incógnita
f(x) = imagem
- a = coeficiente sempre negativo
b = coeficiente
Exemplo de gráfico da função decrescente: f(x) = - 5x
[pic 13]
8 – Função quadrática ou polinomial do segundo grau
Identificamos que uma função é do segundo grau quando o maior expoente que acompanha a variável x (termo desconhecido) é 2. O gráfico da função polinomial do segundo grau sempre será uma parábola. A sua concavidade muda de acordo com o valor do coeficiente a. Sendo assim, se a é positivo, a concavidade é para cima e, se for negativo, é para baixo.
Fórmula geral da função quadrática ou polinomial do segundo grau
f(x) = ax2 + bx + c
x = domínio
f(x) = imagem
a = coeficiente que determina a concavidade da parábola.
b = coeficiente.
c = coeficiente.
Exemplo de gráfico da função polinomial do segundo grau: f(x) = x2 – 6x + 5
[pic 14]
9 – Função modular
A função modular apresenta o módulo, que é considerado o valor absoluto de um número e é caracterizado por (| |). Como o módulo sempre é positivo, esse valor pode ser obtido tanto negativo quanto positivo. Exemplo: |x| = + x ou |x| = - x.
Fórmula geral da função modular
f(x) = x, se x≥ 0
ou
f(x) = – x, se x
x = domínio
f(x) = imagem
- x = simétrico do domínio
Exemplo de gráfico da função modular: f(x) =
[pic 15]
10 – Função exponencial
Uma função será considerada exponencial quando a variável x estiver no expoente em relação à base de um termo numérico ou algébrico. Caso esse termo seja maior que 1, o gráfico da função exponencial é crescente. Mas se o termo for um número entre 0 e 1, o gráfico da função exponencial é decrescente.
Fórmula geral da função exponencial
f(x) = ax
a > 1 ou 0
x = domínio
f(x) = imagem
a = Termo numérico ou algébrico
Exemplo de gráfico da função exponencial crescente: f(x) = (2)x, para a = 2
[pic 16]
Exemplo de gráfico da função exponencial decrescente: f(x) = (1/2)x para a = ½
[pic 17]
11
...