Essays.club - TCC, Modelos de monografias, Trabalhos de universidades, Ensaios, Bibliografias
Pesquisar

ATPS MATEMATICA APLICADA 2

Por:   •  15/11/2018  •  1.253 Palavras (6 Páginas)  •  406 Visualizações

Página 1 de 6

...

Passo 2: Calcular a área do quadrilátero OABC utilizando produto vetorial, adotando que a cota de cada vetor será z = 0.

Para cálculo da área total, vamos somar a metade do módulo do produto vetorial dos vetores OA x AB e BC x CO, ou seja:

|AO x AB| + |BC x CO| = Área total do quadrilátero.

2 2

Considera-se ‘x’ o produto vetorial entre os dois vetores.

Para cálculo do módulo dos produtos vetoriais, vamos usar novamente a regra: √v.v = |v| (Módulo do vetor).

- Cálculo da área formada pelo “triângulo” OA x AB:

[pic 21][pic 22]

i j k

3.28 2.28 0

-5.82 3.16 0

0i + 0j + 10,3648k – (13,2696k + 0i + 0j)

Produto Vetorial: (0, 0, 23.634)

√ (0² + 0² + 23.634²) => √558,56 => 23,634

(23,634 é o dobro da área do “triângulo” formado pelos vetores).

23,634 / 2 = 11,817 (Área do “triângulo” formado pelos vetores).

- Cálculo da área formada pelo “triângulo” BC x CO:

[pic 23][pic 24]

i j k

-3.19 -1.42 0

5.73 -4.02 0

0i + 0j + 12,823k – (-8,13k + 0i + 0j)

Produto Vetorial: (0, 0, 20.95)

√ (0² + 0² + 20,95²) => √439,02 => 20,953

(20,953 é o dobro da área do “triângulo” formado pelos vetores)

20,953 / 2 = 10,476 (Área do “triângulo” formado pelos vetores)

A área total é a soma das áreas formadas pelos “triângulos”:

11,817 + 10,476

22,293 é a área do quadrilátero formada pelos vetores.

Passo 3: Considerar que cada trajetória pode ser definida por uma reta. Determinar a equação reduzida na variável x de cada uma destas retas.

- Cálculo da reta OA:

x y 1 [pic 25][pic 26]

3.28 2.28 1

0 0 1

2,28x + 0y – (3,28y + 0x)

2,28x – 3,28y = 0

Y= 2,28x / 2,28

3,28 / 2,28[pic 27]

[pic 28]

Y =

- Cálculo da reta AB:[pic 29][pic 30]

x y 1

-2.54 5,44 1

3.28 2.28 1

5,44x + 3,28y - 5,79 – (17,84 + 2,28x – 2,54y)

3,16x + 5,82y – 23,63 = 0

Y = -3,16x + 23,63 / -3,16

5,82 / -3,16

[pic 31]

Y = x – 7,47

-1,84

- Cálculo da reta BC:[pic 32][pic 33]

x y 1

-5.73 4.02 1

-2.54 5,44 1

4,02x – 2,54y – 31,17 – ( -10,21 + 5,44x – 5,73y)

-1,42x + 3,19y – 20,96 = 0

Y = 1,42x + 20,96 /1,42

3,19 /1,42

[pic 34]

Y = x + 14,76

2,24

- Cálculo da reta CO:[pic 35][pic 36]

x y 1

0 0 1

-5.73 4.02 1

0x – 5,73y – (4,02x + 0y)

-5,73y – 4,02x = 0

Y = -4,02x /-4,02

5,73 /-4,02

[pic 37][pic 38]

Y =

ETAPA 3:

Passo 1: Apresentar a solução do problema em forma matricial (Ax = b) e explicar o significado de cada matriz/vetor indicado.

Nessa matriz cada linha representa um local (onde o silo poderá ser instalado)

As colunas representam as cidades A, B, C e D, respectivamente. T1, t2, t3 3 t4 representam a produção de maçãs em cada cidade. B1, b2, b3 e b4 representa o total da equação: B1=(CidadeA*ProduçãoA)+(CidadeB*ProduçãoB)+(CidadeC*ProduçãoC)+(CidadeD*Produção)

[pic 39]

Passo 2: Apresentar a solução numérica para o problema e justificar os resultados alcançados.

[pic 40]

O melhor local para construção do silo é o III, pois resultou na menor distância

Passo 3: Considerar que para desenvolver um programa que resolva essa questão é necessário primeiro que se estabeleça o algoritmo que determinará o melhor lugar para a construção do silo, retornando como saídas qual foi o local escolhido e o fator que determinou a escolha. Por isso, vocês deverão apresentar um pseudocódigo do algoritmo que mostre, para a equipe de desenvolvimento, como um programa computacional poderia ser implementado para resolver esse problema.

...

Baixar como  txt (8.1 Kb)   pdf (58.3 Kb)   docx (577.3 Kb)  
Continuar por mais 5 páginas »
Disponível apenas no Essays.club