Engenharia de Controle e Automação Circuitos RC e RL
Por: Rodrigo.Claudino • 14/3/2018 • 1.319 Palavras (6 Páginas) • 452 Visualizações
...
Figura 2:
[pic 3]
A figura 3 se refere ao circuito 2, onde o capacitor está em série com o resistor.
Figura 3:
[pic 4]
Ao analisar a figura 4, é possível observar as ondas no canal 1 e no canal 2, onde respectivamente, o canal 1 representa a corrente no circuito inteiro e tem uma onda quadrada e o canal 2 representa a tensão medida a partir do resistor, podendo observar que há uma queda de tensão.
Figura 4:
[pic 5]
A figura 5, que pertence ao circuito 2, representa a curva de tensão do circuito. Para que fosse encontrado o tempo (t) necessário para a tensão cair até 37% de seu valor inicial que está representado pela média das medições na tabela 1, foram feitos os seguintes cálculos:
7,4 x 0,5 = 3,7 µV → 3,7 x 0,37 = 1,369 → 1,369 : 0,5 = 2,738s
Sendo 2,738s o tempo necessário para a tensão cair a 37%.
Tabela 1:
[pic 6]
Em seguida, usando o valor medido de t e o valor medido da resistência, foi possível calcular a capacitância através dos seguintes cálculos:
C = T / R → 24,71 x 10^-6s / 986Ω → 0,025 x 10^-6 → C =
25 nF
Figura 5:
[pic 7]
Figura 6:
A figura se refere ao circuito 3, onde o resistor está em série com o indutor.
[pic 8]
Ao analisar a figura 7, é possível observar as ondas no canal 1 e no canal 2, onde respectivamente, o canal 1 representa a corrente no circuito inteiro e tem uma onda quadrada e o canal 2 representa a tensão medida a partir do resistor, podendo observar que não houve muita mudança em relação a onda do canal 1.
Figura 7:
[pic 9]
O circuito 4 foi feito baseado no circuito 3, invertendo apenas a ordem do indutor com o resistor.
Ao analisar a figura 8, é possível observar as ondas no canal 1 e no canal 2, onde respectivamente, o canal 1 representa a corrente no circuito inteiro e tem uma onda quadrada e o canal 2 representa a tensão medida a partir do indutor, podendo observar que houve uma grande mudança em relação a onda do canal 1 assim se assimilando ao resultado obtido no circuito 2.
Figura 8:
[pic 10]
A figura 9, que pertence ao circuito 4, representa a curva de tensão do circuito. Para que fosse encontrado o tempo (t) necessário para a tensão cair até 37% de seu valor inicial, que está representado pela média das medições na tabela 2, foram feitos os seguintes cálculos:
7,0 x 0,5 = 3,5 µV → 3,5 x 0,37 = 1,3 → 1,3 : 0,5 = 2,6s
Sendo 2,6s o tempo necessário para a tensão cair a 37%.
Tabela 2:
[pic 11]
Em seguida, usando o valor medido de t e o valor medido da resistência, foi possível calcular a indutância através dos seguintes cálculos:
T= L / R -> L= R.T -> L= 986 X 10^-6 -> L= 986 X 10^-5Ω
Figura 9:
[pic 12]
Conclusão
Ao analisar a função da tensão em função do tempo em um Circuito RC é possivel aferir que na pratica assim como na teoria a ascensão e também o declínio de forma exponencial. Quanto maior a carga maior será a energia acumulada pelo capacitor.
Foi observado que o resistor em serie com o capacitor que ocorre a atuação dos filtros deixando assim a onda tender ao formato senoidal em seus picos, porém é visto que nos picos é formato uma exponencial . Enquanto que o capacitor em serie com o resistor acaba fazendo com o que ocorra uma queda, o que já era esperado pela teoria.
Na segunda parte do experimento foi analisado as características do circuito RL, que assim como o Circuito RC, forma uma onda no formato senoidal devido a constante de tempo. Esses dois circuitos armazenam energia porem diferem pois o RL armazena na forma de campo magnético.
Ao analisar os graficos do Circuito RL é possivel ver na primeira parte que o formato da onda quase não se alterou, mas devido a característica desse circuito foi obtida ondas com formato exponencial. Na segunda parte onde o indutor estava em serie com o resistor é possível analisar que existe uma oposição maior a corrente, com ondas também no formato exponencial, confirmando assim a teoria.
No contexto geral vimos que a tensão em função do tempo
...