Lei de Hooke
Por: YdecRupolo • 19/4/2018 • 1.546 Palavras (7 Páginas) • 402 Visualizações
...
[pic 1]
[pic 2]
O suporte de massas utilizado foi um objeto de ferro com gancho feito para colocar as massas e depois suspendê-las na extremidade da mola. E o conjunto de massa é representado pelos “pesinhos” onde a massa variou de 0,01 kg a 0,05 kg.
[pic 3]
O procedimento da experiência foi sequenciado em:
- Colocamos as duas molas suspensas, uma de cada vez, sem nenhuma deformação e medimos com a régua o tamanho de cada mola, sendo o seu X0;
- Penduramos o porta-peso e colocamos um peso de 0,1 kg e anotamos o valor correspondente na mola 1;
- Repetimos a operação acima outras duas vezes;
- Depois repetimos toda a operação do peso, com pesos diferentes de 0,2 kg, 0,3 kg; 0,4 kg e 0,2 kg;
- Após realizarmos as medições com a mola 1, repetimos o mesmo processo para a mola 2.
-
RESULTADOS E DISCUSSÕES
Faz-se necessário calcular a média, desvio padrão, incerteza do tipo A, incerteza do tipo B e incerteza do tipo C da deformação da mola.
Foram aferidas medições de duas molas diferentes com massa, de 0,01 kg a 0,05 kg. E realizados 3 medições para cada “pesinho”.
A massa dos “pesinhos” são os mesmos para as duas molas, sendo então 0,01 kg; 0,02 kg; 0,03 kg; 0,04 kg e 0,05 kg. Com essa informação conseguimos saber o peso dos objetos, pela Lei de Newton que diz:
[pic 4]
Onde m é a massag = gravidade da terra que é dada por: 9,78 m/s²
[pic 5]
[pic 6]
[pic 7]
[pic 8]
[pic 9]
Definimos, com o uso da régua que o X0 da mola 1 é igual a 0,1 m e o X0 da mola 2 equivale a 0,13 m. Para encontrar a média da primeira mola, após as medições realizadas é utilizada a fórmula:
[pic 10]
Onde: x1 é a medida 1, x2 a medida 2 e assim por diante.N: é o número de medidas efeituadas, nesse caso 3.
Sendo assim, a média das medidas da mola 1, para primeira medida, x=0,01 kg é:
[pic 11]
[pic 12]
Para segunda medida, x=0,02 kg é:
[pic 13]
[pic 14]
Para terceira medida, x=0,03 kg é:
[pic 15]
[pic 16]
Para quarta medida, x=0,04 kg é:
[pic 17]
[pic 18]
Para quinta medida, x=0,05 kg é:
[pic 19]
m[pic 20]
Após encontrar a média é realizado o cálculo de desvio padrão pela equação:
[pic 21]
Onde x1 é a primeira medição subtraída pela média efetuada no cálculo anterior;N: é o número de medidas.
Assim, ao colocar na fórmula acha-se o desvio padrão da mola 1:
Para primeira medida, x=0,01 kg temos:
[pic 22]
[pic 23]
[pic 24]
[pic 25]
Para segunda medida, x=0,02 kg temos:
[pic 26]
[pic 27]
[pic 28]
[pic 29]
Para terceira medida, x=0,03 kg temos:[pic 30]
[pic 31]
[pic 32]
[pic 33]
Para quarta medida, x=0,04 kg temos:
[pic 34]
[pic 35]
[pic 36]
[pic 37]
Para quinta medida, x=0,05 kg temos:
[pic 38]
[pic 39]
[pic 40]
[pic 41]
Com o cálculo do desvio padrão feito, é possível calcular a incerteza tipo A, que é a incerteza da medida e a incerteza tipo C, ou incerteza combinada, que é a combinação como o próprio nome já diz, da incerteza tipo A com a do tipo B que é dada no instrumento.
[pic 42]
Incerteza Tipo A é dada pela fórmula abaixo, onde sigma (σA) é o desvio padrão dividido pelo número de medidas realizadas.
[pic 43]
Para primeira medida, x=0,01 kg temos:
[pic 44]
Para segunda medida, x=0,02 kg temos:
[pic 45]
Para terceira medida, x=0,03 kg temos:
[pic 46]
Para quarta medida, x=0,04 kg temos:
[pic 47]
Para quinta medida, x=0,05 kg temos:
[pic 48]
A incerteza tipo B é encontrada no instrumento de medida. No caso da mola a incerteza do aparelho manuseado era 0,5
...