A IMPORTÂNCIA DA DISCIPLINA CALCULO DIFERENCIAL PARA O CURSO DE GRADUÇÃO EM ENGENHARIA CIVIL
Por: Carolina234 • 27/11/2017 • 2.940 Palavras (12 Páginas) • 621 Visualizações
...
2. HISTORIA
A história do cálculo encaixa-se em vários períodos distintos, de forma notável nas eras antiga, medieval e moderna.
2.1 ANTIGUIDADE
Na Antiguidade, foram introduzidas algumas ideias do cálculo integral, embora não tenha havido um desenvolvimento dessas ideias de forma rigorosa e sistemática. A função básica do cálculo integral, calcular volumes e áreas, pode ser remontada ao Papiro Egípcio de Moscou (1850 A.C.), no qual um egípcio trabalhou o volume de um frustum piramidal. Eudoxo de Cnido, ou Eudoxus, (408-355 a.C.) usou o método da exaustão para calcular áreas e volumes. Arquimedes (287-212 a.C.) levou essa ideia além, inventando a heurística, que se aproxima do cálculo integral. O método da exaustão foi redescoberto na China por Liu Hui no século III, que o usou para encontrar a área do círculo. O método também foi usado por Zu Chongzhi século V, para achar o volume de uma esfera.
2.3 IDADE MÉDIA
Na Idade Média, o matemático indiano Aryabhata usou a noção infinitesimal em 499 d.C. expressando-a em um problema de astronomia na forma de uma equação diferencial básica. Essa equação levou Bhāskara II no século XII a desenvolver uma derivada prematura representando uma mudança infinitesimal, e ele desenvolveu também o que seria uma forma primitiva do "Teorema de Rolle".
No século XII, o matemático persa Sharaf al-Din al-Tusi descobriu a derivada de polinômios cúbicos, um resultado importante no cálculo diferencial. No século XIV, Madhava de Sangamagrama, juntamente com outros matemáticos-astrônomos da Escola Kerala de Astronomia e Matemática, descreveu casos especiais da Série de Taylor, que no texto são tratadas como Yuktibhasa.
2.4 IDADE MODERNA
Na Idade Moderna, descobertas independentes no cálculo foram feitas no início do século XVII noJapão por matemáticos como Seki Kowa, que expandiu o método de exaustão. Na Europa, a segunda metade do século XVII foi uma época de grandes inovações. O Cálculo abriu novas oportunidades na física-matemática de resolver problemas muito antigos que até então não haviam sido solucionados. Muitos matemáticos contribuíram para essas descobertas, notavelmente John Wallis e Isaac Barrow. James Gregory proveu um caso especial do segundo teorema fundamental do cálculo em 1668.
Coube a Gottfried Wilhelm Leibniz e a Isaac Newton recolher essas ideias e juntá-las em um corpo teórico que viria a constituir o cálculo. A ambos é atribuída a simultânea e independente invenção do cálculo. Leibnitz foi originalmente acusado de plagiar os trabalhos não publicados de Isaac Newton; hoje, porém, é considerado o inventor do cálculo, juntamente com Newton. Historicamente Newton foi o primeiro a aplicar o cálculo à física ao passo que Leibniz desenvolveu a notação utilizada até os dias de hoje, a notação de Leibniz. O argumento histórico para conferir aos dois a invenção do cálculo é que ambos chegaram de maneiras distintas ao teorema fundamental do cálculo.
Quando Newton e Leibniz publicaram seus resultados, houve uma grande controvérsia de qual matemático (e portanto que país: Inglaterra ou Alemanha) merecia o crédito. Newton derivou seus resultados primeiro, mas Leibniz publicou primeiro. Newton argumentou que Leibniz roubou ideias de seus escritos não publicados, que Newton à época compartilhara com alguns poucos membros da Sociedade Real. Esta controvérsia dividiu os matemáticos ingleses dos matemáticos alemães por muitos anos. Um exame cuidadoso dos escritos de Leibniz e Newton mostra que ambos chegaram a seus resultados independentemente, com Leibniz iniciando com integração e Newton com diferenciação. Nos dias de hoje tem-se que Newton e Leibniz descobriram o cálculo independentemente. Leibniz, porém, foi quem deu o nome cálculo à nova disciplina, Newton a chamara de "A ciência dos fluxos".
2.5 IDADE COMPEPORÂNIA
Na Idade Contemporânea, já no século XIX, o cálculo foi abordado de uma forma muito mais rigorosa. Foi também durante este período que ideias do cálculo foram generalizadas ao espaço euclidiano e ao plano complexo. Lebesgue mais tarde generalizou a noção de integral. Sobressaíram matemáticos como Cauchy, Riemann, Weierstrass e Maria Gaetana Agnesi. Esta foi autora da primeira obra a unir as ideias deIsaac Newton e Gottfried Wilhelm Leibniz; escreveu também um dos primeiros livros sobre cálculo diferencial e integral. É dela também a autoria da chamada "curva de Agnesi".
3. PRINCÍPIOS
3.1 LIMITES E INFINITESIMAIS
O cálculo é comumente utilizado pela manipulação de quantidades muito pequenas. Historicamente, o primeiro método de utilizá-lo era pelas infinitesimais. Estes objetos podem ser tratados como números que são, de alguma forma, "infinitamente pequenos". Na linha numérica, isso seria locais onde não é zero, mas possui "zero" de distância de zero. Nenhum número diferente de zero é um infinitesimal, porque sua distância de zero é positiva. Qualquer múltiplo de um infinitesimal continua sendo um infinitesimal. Em outras palavras, infinitesimais não satisfazem a propriedade arquimediana. Deste ponto de vista, o cálculo é uma coleção de técnicas para manipular infinitesimais. Tal pensamento foi ignorado no século XIX porque era muito difícil ter a noção precisa de uma infinitesimal. Entretanto, o conceito foi reutilizado no século XX com a introdução da análise não padronizada, a qual propiciou fundamentos sólidos para a manipulação de infinitesimais.
No século XIX, as infinitesimais foram substituídas pelos limites. Limites descrevem o valor de uma função em um certo ponto em termos dos valores de pontos próximos. Eles capturam o comportamento numérico em baixa escala, como nas infinitesimais, mas utilizando números ordinários. Deste ponto de vista, cálculo é uma coleção de técnicas para a manipulação de certos limites. As infinitesimais foram substituídas por números muito pequenos, e o comportamento infinitamente pequeno da função é encontrado pelo limite de números cada vez menores. Limites são fáceis de serem colocados em fundações rigorosas e, por esse motivo, são a abordagem padrão para o cálculo.
3.2 DERIVADAS
O conceito de derivada é fundamentalmente mais avançado do que os conceitos encontrados em álgebra.
...