Essays.club - TCC, Modelos de monografias, Trabalhos de universidades, Ensaios, Bibliografias
Pesquisar

A Hidráulica e Hidrologia

Por:   •  12/7/2018  •  996 Palavras (4 Páginas)  •  335 Visualizações

Página 1 de 4

...

Calculamos o desvio padrão, que serve para dizer o quanto os valores dos quais extraímos a média são próximos ou distantes da própria média, através da equação

[pic 7]

E então avaliamos os erros:

Erro padrão da média: que avalia a precisão do cálculo da média

[pic 8]

[pic 9][pic 10]

Propagações do erro: é uma forma de verificar a confiabilidade dos dados de uma certa amostra ou medida

[pic 11]

[pic 12]

[pic 13][pic 14] (7)

[pic 15]

[pic 16]

4. RESULTADOS E DISCUSSÕES

Medida do volume da caixa auxiliar: 629x495x100mm

Tabela 1: Medida de vazão pelo método volumétrico para potencia de 35hz

Medidas

Tempo

(s)

Vazão

(m³/s)

Vazão (l/min)

Medidor Digital

Vazão (l/h)

Rotâmetro

1

28,01

0,11183

64,40

3800

2

27,89

0,11183

64,30

3800

3

27,63

0,11183

63,90

3850

Média

27,84

0,11183

64,20

3816,67

Tabela 2: Medida de vazão pelo método volumétrico para potencia de 25hz

Medidas

Tempo

(s)

Vazão

(m³/s)

Vazão (l/min)

Medidor Digital

Vazão (l/h)

Rotâmetro

1

40,66

0,11183

44,40

2650

2

41,29

0,11183

44,30

2600

3

40,24

0,11183

44,10

2600

Média

40,73

0,11183

44,27

2616,70

- Através da equação 1 obtivemos a vazão volumétrica em m³ = 011183

s

- Com a equação 2, calculamos a média aritmética do tempo, medidor digital e rotâmetro para a potência de 35Hz e 25Hz, respectivamente:

27,84 s ; 64,20L ; 3816,67L e

min h

40,73 s ; 44,27L ; 2616,70L

min h

- Depois realizamos os desvios padrão através da fórmula 5 e encontramos os valores a seguir:

Desvio Padrão do Rotâmetro (35Hz) = 8,314 x 10-6

Desvio Padrão do medidor digital (35Hz) = 4,385 x 10-6

Desvio Padrão do cronômetro (35Hz) = 0,

Desvio Padrão do Rotâmetro (25Hz) = 8,019 x 10-6

Desvio Padrão do medidor digital (25Hz) = 2,546 x 10-6

Desvio Padrão do cronômetro (25Hz) =

- Após calcular o desvio padrão, calculamos o erro da média, pela fórmula 6 e obtivemos os valores:

Erro da média do Rotâmetro (35Hz) =

Erro da média do Medidor digital (35Hz) =

Erro da média do Cronômetro (35Hz) =

Erro da média do Rotâmetro (25Hz) =

Erro da média do Medidor digital (25Hz) =

Erro da média do Cronômetro (25Hz) =

- Então, fizemos a propagação dos erros para a vazão em massa e em peso através da fórmula 7, obtendo os resultados a seguir:

5. CONCLUSÃO

De acordo com o experimento, pudemos observar que a vazão está diretamente ligada ao tempo.

Na experiência, devido ao uso de tubulações com

...

Baixar como  txt (7.1 Kb)   pdf (57.1 Kb)   docx (17.2 Kb)  
Continuar por mais 3 páginas »
Disponível apenas no Essays.club